
COMPLETE GROUND SOFTWARE RE-USE:
THE COMMON GROUND APPROACH TO A RE-USABLE, SHARED GROUND SYSTEM

Priscilla L. McKerracher1

David S. Tillman
R. Michael Furrow
Leeha R. Herrera

1The Johns Hopkins University Applied Physics Laboratory (JHU/APL), Laurel, MD 20723-6099
Email: Priscilla.Mckerracher@jhuapl.edu

ABSTRACT
Institutions with existing spacecraft control systems often
plan to “re-use” the architecture of the existing ground
system on future missions. One means of re-using the ex-
isting system is to “snapshot” the existing software re-
quirements, design, and code; deliver this package to the
new project; and assign the new project team the task of
evolving the new ground software from the snapshot.

Another approach to re-use is to establish a common team
and employ a shared software repository. In this approach
mission-specific requirements must be isolated from
common requirements. This common ground approach
has the potential for higher cost savings and improved
overall product quality. Key challenges to this approach
include the development of organizational, infrastructure,
and technical solutions that support this model.

1. INTRODUCTION

The JHU/APL Space Department has a history of supporting
Mission Operations for NASA spacecraft. Since the mid
1990s we have deployed a ground system with an architec-
ture based on the use of Integral Systems EPOCH T&C®9

product, which supports the core command, control and te-
lemetry display features that are required. We “re-used” the
initial EPOCH-based ground system, which was developed
for the NEAR (Near Earth Asteroid Rendezvous) satellite, in
the TIMED (Thermosphere, Ionosphere, Mesosphere Ener-
getics and Dynamics), CONTOUR (COmet Nucleus
TOUR), MESSENGER (MErcury Surface, Space ENvi-
ronment, GEochemistry, and Ranging), STEREO (Solar
Terrestrial Relations Observatory), and New Horizons pro-
grams. All of these missions are NASA supported missions.

2. OLD SNAPSHOT PARADIGM FOR RE-USE

The original method employed for re-use of JHU/APL
ground systems was to make a copy or “snap-shot” of the
latest version of the older ground system, and to deliver
the supporting documentation and code as a start for the
next system. The new project then created a new “branch”
from the existing heritage system. The assumption was

that the requirements for the new system were similar to
those for the heritage system; therefore, this approach was
considered less costly than building a new ground system
from scratch. In this approach there was re-use of the ex-
isting architecture, along with requirements and design.
The TIMED and CONTOUR ground systems followed
this model.

2.1 Characteristics
Although the snapshot approach is considered “faster”
than starting from scratch; the savings are limited. Be-
cause the heritage system was not designed for re-use,
the snap-shot has no guaranteed maturity, and the origi-
nal project did not require the developer to avoid embed-
ding mission-specific information into source code, the
migration from original project to new project repository
is not cost-free. That is, the amount of re-use savings with
this approach is typically not as high as expected. Savings
of 10-20% of development costs are typical; the project
may hope for savings as high as 50-70%. The new devel-
oper must review the original documentation and code
and locate the mission-specific parameters. Since there is
a large body of documentation and code, this is not a triv-
ial task. The developer must also evaluate the existing re-
quirements against new project requirements and update
the design and code accordingly. All modified documents
must be reviewed and all modified code, must be re-
tested and re-deployed in the new project environment.

With the snapshot approach there are no savings in the
maintenance phase of the development. Any errors that
are found and fixed in the new project must be separately
communicated and manually updated in the heritage pro-
ject. Separate Software Problem Reports (SPRs) must be
entered, fixed and tracked in each project’s problem
tracking system. Often different developers are support-
ing different projects, and communication of problems
may not occur as easily or as often as is desirable.

Finally, there are no strong incentives to minimize the di-
vergence among the various conceptual and detailed de-
sign implementations. This results in “re-inventing the
ground software wheel,” which wastes limited project re-
sources, as well as creative effort.

3. NEW COMMON GROUND PARADIGM

3.1 Goals
Despite the issues related with the “snapshot” re-use
model, this model was adequate for the serial develop-
ment of new ground systems on TIMED and CONTOUR.
With the coming launch of three missions with overlap-
ping development schedules (MESSENGER, STEREO
and New Horizons) the ground systems applications
group realized stronger drivers and opportunities for de-
velopment of a new re-use model. The drivers included
the goals to improve overall quality, to reduce Ground
System software development costs, and to improve ef-
fort estimates and schedule compliance.

To achieve these goals we established a shared repository
within a single “Common Ground” configuration man-
agement system. We required each of the three missions
to contribute some initial development time to the start-up
effort needed to restructure the existing requirements, de-
sign, and code. All identifiable mission-specific items
were encapsulated and separated from the common code-
base. In addition, updates were made to support an oper-
ating system upgrade that was incompatible with a com-
mercial software library that was extensively used in the
heritage code. A team of approximately six developers
worked for ~six months to restructure and re-deploy the
existing software. In addition they updated requirements
and design documentation into standard formats, and held
our required process reviews. After this initial develop-
ment effort we deployed the first build of released soft-
ware for the MESSENGER and STEREO projects. The
first build of the New Horizons software was not required
at this time. It was later configured and deployed at a cost
of ~two staff-months of development time. This reflects a
significant cost-savings for deployment of future first
builds.

3.2 Fundamentals
 In order to have significant software re-use and to realize
the associated cost-savings, there are some required fun-
damentals. To begin with the top-level system require-
ments and design must remain applicable from mission to
mission. Divergence in detailed requirements and design
must be dramatically reduced from mission to mission.
This approach implies some constraints on the “system”
of flight software, flight hardware, ground software, as
well as the concepts of operations employed by the Mis-
sion Operations and Integration and Test teams. The chal-
lenge is to find the right balance between constraints and
flexibility such that the resulting system still meets the
requirements of its user communities.

The mechanics of requirements development, capture,
and configuration management must make the existing
state of the ground system easily visible to the leads as-

signed to new missions. Visibility into the capabilities
that are readily available and the operational concepts
supported is a must. Each of these areas must support
clear and flexible delineation of any mission-specific
elements from the common elements.

To support a shared development environment, a single
system is needed for software source code Configuration
Management (CM) and for SPRs or Change Requests
(CR’s), for all missions. The CM system should favor
capturing and presenting common information, but pro-
vide the flexibility to address mission-specific elements.

In addition, all personnel must develop a multi-mission
mindset. Visibility into and responsibility for key func-
tional areas across missions is required. This approach is
a significant departure from the mission-oriented devel-
opment teams of the past. The team must recognize the
advantages of retaining corporate knowledge in functional
areas, while providing natural disincentives to invent
multiple solutions to the same problem. “Re-inventing the
ground software wheel” is no longer supported.

3.3 Approach
From a software perspective, re-use can occur at the
source file, library, application, or system level. At any of
these levels, re-use of one or more of the following prod-
ucts is possible:

Concepts Design
Requirements Code
Architecture Test Plans
Interface User Guides

In order to achieve maximum re-use at several levels, we
developed group organizational solutions, software infra-
structure solutions, and implementation-specific technical
solutions.

4. ORGANIZATIONAL SOLUTIONS

4.1 Product Lines
One of the most important elements of our approach is a
reorganization along major functional areas or Product
Lines (PL). The advantages of a PL organization include
its ability to leverage knowledge in functional areas
across multiple missions, and its tendency to naturally
discourage deviations in approach from mission to mis-
sion.

With the snapshot approach we had multiple independent
teams redeveloping the same functionality. Individuals on
each team had to acquire a detailed understanding of es-
sentially the same applications. This was an expensive
and risky process since the skill level and the ability to
infer how a pre-existing application operated varied
among team individuals. Misunderstandings on how to

adapt subtle or undocumented design methodologies led
to unexpected consequences. The intensity of the delivery
schedule and the primary focus on the current mission led
developers to take the most obvious path when modifying
the software to support the mission. There was little in-
centive for them to generalize the software. There was
also little opportunity to work with flight software devel-
opers and the Mission Operations team to adopt identical
approaches across missions.

Our solution was to align across missions and along func-
tional areas. For the “Common Ground” approach, we
analyzed the existing Ground System applications and
architecture and found that from a functional standpoint,
the applications could be logically grouped into five
Computer Software Configuration Items (CSCIs). We
then established each logical grouping as a PL with a lead
engineer (Product Line Lead [PLL]) responsible for the
system engineering and architectural decisions within a
PL. A System Engineer was appointed to oversee the sys-
tem as a whole and to coordinate decisions and ap-
proaches used by the individual PLLs. The PL (and
CSCI) areas are Commanding, Telemetry, Planning, As-
sessment, and Tools. Each CSCI is comprised of a set of
underlying CSCs. The CSCs are primarily C/C++ pro-
grams running in a Unix environment and communicating
with each other via Remote Procedure Calls (RPC) and
Transmission Control Protocol/Internet Protocol (TCP/IP)
socket mechanisms.

The Commanding PL is comprised of a number of
JHU/APL-developed applications (or CSCs) associated
with the translation of command mnemonics and argu-
ments into binary representations. This includes CSC’s
which perform the Consultative Committee for Space
Data Systems (CCSDS)1,2,3,4,5 packetization of the com-
mands, the framing of the packets, and the conversion to
Command Link Transfer Units (CLTUs) required for ra-
diation to the spacecraft.

The Telemetry PL encompasses CSCs associated with the
acquisition of raw telemetry (e.g., from the selected an-
tenna interface). There are processes required for extract-
ing meta-data from the Telemetry Transfer Frame wrap-
pers, and reconstructing and distributing packets to the
commercial-off-the-shelf (COTS) real-time telemetry
component.

The Planning PL includes the applications that create
scripts and binary data needed for loading parameters,
structures, and onboard executables to the spacecraft.
This PL is also responsible for interpreting the results of
downlinks (or dumps) of those objects for the purpose of
verifying correct transmission to the spacecraft. For mis-
sions that make extensive use of onboard programming
(i.e., macros), it provides the post-processing required to
manage the allocation of commands to macros, the crea-

tion of time-tags, and the coordination of the load. Soft-
ware-based spacecraft simulators used for command veri-
fication also fall within this PL.

Assessment CSCs are responsible for archiving and re-
trieving the telemetry needed for analysis or for space-
craft health and assessment purposes. Multiple CSCs
work in an offline capacity to process the quantities of
data delivered post-pass. This CSC supports offline proc-
essing of alarms in housekeeping data collected between
passes and saved to the recorder. It also supports proc-
esses that perform short term and long-term analyses of
selected points to support the detection of unsafe trends.

The Tools CSCI is a collection of applications, whose
primary unifying characteristic is that they supply some
unique capability that would not be economical to dupli-
cate in house. Many of these pieces are COTS or gov-
ernment-off-the-shelf (GOTS) applications, occasionally
augmented by JHU/APL-developed components.

4.2 Common Ground Team
All of the PLLs are directly involved with development as
well as with the direction of a small pool of developers (~
10). Development activity is coordinated across missions
so that the developers can develop common functionality
for all missions at the same time. The PLL is therefore
motivated to minimize the differences between missions.
If the ground software differences stem from differences
in flight software or Mission Operation approaches, the
PLL will bring this to the attention of the relevant parties
and lobby for a common approach, if possible. The PLL
and developers are well versed in the detailed require-
ments for their functional area for all missions and thus
are in a position to recommend a common approach that
the other team members may not have considered.

4.3 Working Instructions
With the introduction of any new process, it is essential to
educate and support the team in adapting to the new
methods. We needed a process that would allow us to de-
liver major, minor, and patch releases with minimal over-
head, but assured integrity. The CM tool’s facilities had
to be employed in such a way as to support the concept of
a single code base with mission-specific specializations
and to do so in a manner straightforward enough to not
impede the developers.

A set of procedures, developed and maintained online,
provide detailed instructions for supporting all the possi-
ble development scenarios (normal development, patch
release, etc.). Additional procedures detail the steps Build
Managers and the Configuration Managers execute in
producing deliveries.

5. INFRASTRUCTURE SOLUTIONS

The Common Ground goal of maximal re-use is sup-
ported by a number of commercial tools and an existing
architecture.

5.1 DOORS®, for Requirements Re-use
The DOORS® tool from Telelogic provides a powerful and
flexible repository for maintaining requirements, test plans,
and other documents under CM. Tagging common require-
ments in DOORS®, allows us to present a coherent picture
of the native capability of the Ground System software. This
forms an excellent starting point for cost estimation in the
proposal phase and for choosing the path best supported dur-
ing the initial spacecraft system design phase. By starting
with a mature set of requirements, and an associated concept
of operations, we have significant leverage at the flight soft-
ware and Mission Operations levels to steer design decisions
in a direction already supported.

5.2 Re-use of Architecture
The Common Ground real-time architecture is based on
the TIMED Ground System. The key architectural ele-
ment is the use of configuration files to designate a num-
ber of processes which “live” and “die” together and
which communicate via defined internal interfaces over
TCP/IP socket connections. This collection of configur-
able, dependent processes is known as a “stream” in
EPOCH T&C.

5.3 Re-use of CSC and Design Documents
To facilitate document visibility, an electronic folder on a
shared server provides the focal point for detailed design
documentation and review material. Subfolders exist for
each PLL. Within the PLL folders are individual CSCs
folders. At the top level is a “Reviews” folder that con-
tains a subfolder for every Requirements and Design re-
view held for any component. The most recent detailed
design document is actively maintained under its CSCI
folder. Mission-specific details are placed in mission-
specific appendices as required. A standard naming con-
vention and central access greatly enhances the visibility
to all developers, testers, and interested parties on the de-
tails of ground software functionality and design. This
posting method also provides a model for design presen-
tation for new and less experienced developers.

5.4 Re-use With CM Synergy
The CM Synergy system serves as the repository for all
the JHU/APL-developed software in the Ground System
as well as for selected GOTS products. The system sup-
ports the concepts of projects, directories, and objects.
Each CSC application is represented as a project. Each
project has a top level directory, named for the CSC.
Within that directory are typically two branches. The app-

specific branch holds the directories containing objects
that are not used by any other application. Typically there
is a src subdirectory. There might also be a test or a con-
fig subdirectory.

The other branch consists of a directory called Common. It
is in this directory that all files shared across more than one
application are listed. Distinguishing between application
specific and common files in this way provides a strong
visual message to the developer – changes to files in the
Common area must be coordinated with the PLL to ensure
there are no detrimental effects on other applications.

Within the src directory, each application is required to
have a Makefile that conforms to certain rules. In particu-
lar, it is responsible not only for building the associated
executable, but it also manages the deployment of the ex-
ecutable, scripts, and any required configuration files to
the correct relative directory when the “release” target is
invoked. By setting up the local (to the development
workstation) deployment directory structure to mimic the
production structure, the developer is able to control the
placement of files critical to their application. This greatly
simplifies the deployment process as the most knowl-
edgeable person is capturing the specific deployment re-
quirements in the Makefile.

Aggregate projects are defined at the PL (or CSCI) level,
which contain the CSC projects that make up the CSCI.
Additionally, these CSCI-level projects contain a Make-
file whose sole role is to propagate commands to build
the system from the system-level Makefile to the CSC
Makefiles. Again, by doing this and having the PL main-
tain this Makefile, we achieve the goal of having the per-
son closest to the change making the change. The CSCI-
level Makefile only changes when a new CSC (and con-
sequently project) is added to the CSCI. The system-level
Makefile does not need to be modified.

The top level aggregate project is called ground and in-
cludes as subprojects all of the CSCI aggregate projects
plus pseudo-CSCI aggregate projects that manage the
Build scripts, system-wide configuration files, support
functions, and utilities that are needed to complete the
system.

Figure 1 presents the Common Ground CM concept and
presents the CM Synergy capability to associate a “plat-
form” attribute with any object to tag files and directories
as mission-specific. By default, directories and files are
generic. If an application needs to have mission-specific
parameters, then multiple versions of the file containing
the mission-specific elements are maintained. This con-
cept is illustrated in Figure 2. Note that these files have
the same name and are all associated with the project.
Each version has a different value for the “platform” at-
tribute.

MESSENGER Ground
Project

Source Code Repository

generic source code

cmd_if.cpp
build_tctf.cpp

router.cpp
tlm_if.cpp...

MESSENGER specific
source code

GroundSystemConstants.h
TelemetryPacket.h

messenger.sh...

STEREO specific source
code

GroundSystemConstants.h
TelemetryPacket.h

stereo.sh...

New Horizons specific
source code

GroundSystemConstants.h
TelemetryPacket.h
new_horizions.sh...

generic source
code

cmd_if.cpp
build_tctf.cpp

router.cpp
tlm_if.cpp...

MESSENGER specific
source code

GroundSystemConstants.h
messenger.sh

TelemetryPacket.h...

New Horizons Ground Project

generic source
code

cmd_if.cpp
build_tctf.cpp

router.cpp
tlm_if.cpp...

New Horizons specific
source code

GroundSystemConstants.h
new_horizions.sh

TelemetryPacket.h...

Apply
MESSENGER

Platform
Filter

Apply
New Horizons

Platform
Filter

Same
filename,
different
version

and
platform

Project
unique

filename

Figure 1. Common Ground Configuration Management Concept

TelemetryPacket.h
version 1
<generic>

Bug Fix Versions

Telemetry
Packet.h
version 2
<generic>

Telemetry
Packet.h

version msg-1
<messenger>

Telemetry
Packet.h

version st-1
<stereo>

Telemetry
Packet.h

version nh-1
<new

horizons>

TelemetryPac
ket.h

version msg-2
<messenger>

Telemetry
Packet.h

version msg-3
<messenger>

TelemetryPack
et.h

version msg-4
<messenger>

Telemetry
Packet.h

version nh-2
<new

horizons>

Telemetry
Packet.h

version nh-3
<new

horizons>

Telemetry
Packet.h

version nh-4
<new

horizons>

TelemetryPa
cket.h

version st-2
<stereo>

Telemetry
Packet.h

version msg-
2.1

<messenger>

Telemetry
Packet.h

version nh-2.1
<new

horizons>

Figure 2. Configuration Management Support for Version Branching

When the time comes to build the application, the devel-
oper specifies the mission and CM Synergy creates a file
set corresponding to that mission. It will favor mission-
specific versions of files if they exist; otherwise it will
supply the generic version. It will also support branching
to support bug fixes to prior releases which require main-
tenance fixes.

In some cases, differences between applications from
mission to mission are great enough that the actual file
complement differs between the missions. That is, the ap-
plication will require different files for the different mis-
sions, rather than just different versions of the same file.
CM Synergy manages this through the management of
the directory object that contains the files. When the con-
tents of that directory must be different between missions,
the developer creates mission-specific versions of that
directory, each with the desired file complement.

In all cases, visual information provided by CM Synergy
makes clear which files and directories are generic and
which are mission-specific, and it is easy for the devel-
oper to quickly identify what the differences are. In some
cases we are able to redesign the application to eliminate
the need for mission-specific versions of files. CM Syn-
ergy readily supports the merging of files and the estab-
lishment of a single generic copy used by all applications.

5.5 Common Versions of COTS/GOTS
The EPOCH software is maintained by Integral Systems,
and is delivered and built according to documented pro-
cedures on a general-purpose (not mission-related) work-
station at JHU/APL. All missions use the same version of
EPOCH, operating system, compiler, and commercial li-
braries. One of the key benefits of the Common Ground
approach is that the effort associated with migrating ap-
plications to new compiler, operating system (OS), and
commercial library versions is distributed across the mis-
sions. This, in addition to our adherence to use of ISO
(International Organization for Standardization) standard
language features and POSIX (Portable Operating System
Interface based on uniX) system calls where available,
simplifies the long-term maintenance of the system.

6. A SAMPLE TECHNICAL SOLUTION

Using an object-oriented design approach can further ease
the concurrent development of multiple projects with
similar, but not identical data structures or functionality.
Inevitably, because the projects are different, functional-
ity will vary and code for common tasks will need to be
specialized in different areas. How should these situations
be handled? With the support of proper code management
and build processes, the areas of code that need to differ
can be handled by using a parallel class pattern that em-
ploys parallel versions of the affected file or class.

Consider the example where two projects each read data
from a socket, sort the data, and store the data in merged
and sorted files as illustrated in Figure 3. In general the
projects are similar, except that the format of the data to
be stored will differ.

Read Socket Sort Data Write to File

Project 1
data

Project 2
data

Figure 3. Example of Sort Required for Two Projects
with Different Data Formats

Only the code dealing with the interpretation of data will
need to be customized for each project. An object-
oriented solution which employs mostly common classes
is possible. Project specific modifications can be limited
to a few select classes. In this example, two common
classes are created first. A Sort Data class is created
which uses a second Data Definition class. The Data
Definition class contains the basic structure definition in-
formation needed to read the data. The common Data
Definition class can be replaced by a project-specific ver-
sion. The Common Sort Data class is unaffected by the
particular version of the structure class used, and there-
fore remains a “generic” or “common” class.

Use Parallel Classes pattern when:
• Multiple projects are being developed by the same

team and have a high degree of code sharing.
• A common architecture has been developed and will

be reused for specific projects.
• Resources are limited and need to be shared across

multiple projects.

6.1 Structure
The class structure to this pattern is fairly simple. This
pattern relies on a well-structured object oriented archi-
tecture, which separates the functionality of a project ap-
propriately and delineates areas adaptable to common
code. In the data sorting example, two common classes
are defined: a Sorter class and a Data Definition class.
The common Sorter Object uses the common Data Defi-
nition class, thus establishing a user dependency relation-
ship between the classes, as shown by the dotted arrow in
Figure 4.

All projects begin with the Common code base. As the
project develops and specific project needs are identified,
the class structure may be branched by replacing the

Sorter
<common>

DataDefinition
<common>

Figure 4. Common Sorter Class Uses Common Data-
Definition Class

common Data Definition class with a parallel, project-
specific Data Definition class as shown in Figure 5. It is
important to note that the class names and file names are
the same. This is where an advanced CM tool allows ob-
jects of the same name to be managed through the use of
a CM object field that maintains the common or project
specific identifier, keeping the parallel objects unique.

Sorter

<common>
DataDefinition

<common>

Sorter
<common>

DataDefinition
<project A>

Figure 5. Common Sorter Class Can Use Either Pro-
ject Data Definition Class

If it is obvious the branching will be necessary, it is a
good idea to setup a class hierarchy to reduce the amount
of redundant code for the different projects. The nature of
the project may itself lend to a class hierarchy with a
common parent class to establish the interface and project
specific child classes to define the details of the interface
as shone in Figure 6.

DataDefinition
<common>

DataDefinitionBase
<common>

DataDefinition
<project A>

DataDefinition
<project B>

Figure 6. DataDefinition Base Class provides a Gener-
alization of DataDefinition Classes for Each Project

Since changes to DataDefinition <project A> do not af-
fect DataDefinition <project B>, with the parallel class
pattern each project can manage the details of their inter-
face independently.

6.2 Consequences
Parallel Class Structures:
Promotes Reuse and Code Share. A common code base
can be easily used by multiple projects while still allow-
ing the flexibility to customize necessary areas of code.

Requires Configuration Management of Classes. Re-
quires extra CM control to keep track of parallel versions
and associations between Computer Software Compo-
nents (CSCs).

Requires Change Control over Common Classes. Since
Common Classes may be used in multiple projects, it is
necessary to have a process implemented to submit re-
quests to change Common Classes, to ensure that it does
not have adverse affects on other code.

Developers will have to adjust to the Structure. It may
cause confusion at first for developers when modifying
code. The purpose of the Parallel Structure should be well
explained as well as the general guidelines in modifying
common classes, creating branches, and maintaining the
makefiles for each CSC.

6.3 Implementation
The following are a few things to consider when imple-
menting the Parallel Class pattern:

Creation of Common Code Base. It may be difficult to
identify what is common when trying to create a code
base for future projects. One solution is to start with an
existing project’s code base, which could be modified to
support one of more of the next generation projects. The
first step would be to make sure the existing code is in
CM and to then identify the areas that can be common
across the new missions. The next step is to go back
though the new code base and remove any project spe-
cific attributes by either trying to use initialization files or
header files to store necessary hard code values or by as-
suming class branching will be necessary and implement-
ing a rudimentary class as a Base class and using inheri-
tance to reduce to work for each project specific class.

Creating Parallel Classes. Only branch a class when pro-
ject specific modifications are needed. Each branch re-
quires work in maintaining similar code and algorithms.
Try to implement solutions that reduce the need of Paral-
lel Classes when possible. Each time a project specific
version is created, it will be necessary to make the file
association modifications within the CM tool for the pro-
ject. Depending on the file structure used, it may be nec-
essary to modify the location of the class within the
makefile. Once a branch is created, it is best if all de-
pendant CSCs are modified to use the project specific
version.

6.4 Configuration Management
The CM can potentially be the most complex aspect of
this pattern, depending on the CM tool that is used.

For a simpler tool, it will probably be necessary to desig-
nate a directory structure to handle common and project
specific classes. At a high level there should be a desig-
nated common or generic directory and a directory for
each project. Under those directories would be the neces-
sary structure, which would be the same for each branch.
The project specific directory branches may be fairly
empty compared to the common directory, if most of the
code used is common. It is necessary for developers to be
aware of which branch is being used and communication
is necessary between the developers so that all may be
notified when a branch has been made. Under this type of
system it is necessary to ensure the makefiles are main-
tained to pull in the correct files.

With a more sophisticated object based tool, some of the
work is reduced. It is easier to maintain common and pro-
ject specific versions in a tool that is not dependant on a
directory structure but maintains everything as objects in
a database. Rational’s ClearCase and Telelogic’s CM
Synergy are examples of this type of tool. The tool will
have the capability to map the branching for each
object and removes the need to maintain a directory
structure.

7. CONCLUSION
Once the main functionality is implemented for one mis-
sion and released, the specializations needed for the re-
maining missions are addressed. This approach results in
substantial savings, as the cost of the initial implementa-
tions of significant functions get distributed across the

active missions. Costs for adapting the functionality for
the other missions range from significant (typically mem-
ory object management) to nothing at all, depending on
the success of the lobbying efforts.

8. ACKNOWLEDGEMENTS
The authors would like to acknowledge the heritage work
provided by the software development teams for the
NEAR and TIMED missions. We especially acknowledge
the hard work and support of the entire “Common
Ground” software development team, the dedicated sup-
port by system administration personnel and acceptance
test team, as well as the patience, input and support from
the user community we serve: flight subsystem develop-
ers and testers, integration and test team personnel, and of
course, the mission operations teams on all of our mis-
sions.

9. REFERENCES
1Telemetry Summary of Concept and Rationale, CCSDS
100.0-G-1. Green Book. Issue 1. Washington, D.C.:
CCSDS, December 1987.
http://www.ccsds.org/documents/100x0g1.pdf
2Packet Telemetry, CCSDS 102.0-B-5. Blue Book. Issue
5. Washington, D.C.: CCSDS, November 2000.
http://www.ccsds.org/documents/102x0b5.pdf
3Packet Telemetry Service Specification, CCSDS 103.0-
B-2. Blue Book. Issue 2. Washington, D.C.: CCSDS,
June 2001. http://www.ccsds.org/documents/103x0b2.pdf
4Telecommand Summary of Concept and Rationale,
CCSDS 200.0-G-6. Green Book. Issue 6. Washington,
D.C.: CCSDS, January 1987.
http://www.ccsds.org/documents/200x0g6.pdf
5Telecommand Part 1 – Channel Service, CCSDS 201.0-
B-3. Blue Book. Issue 3. Washington, D.C.: CCSDS,
June 2000. http://www.ccsds.org/documents/201x0b3.pdf
6Telecommand Part 2 – Data Routing Service, CCSDS
202.0-B-3. Blue Book. Issue 3. Washington, D.C.:
CCSDS, June 2001.
http://www.ccsds.org/documents/202x0b3.pdf
7Telelogic DOORS®
http://www.telelogic.com/products/doorsers/index.cfm
8Telelogic CM Synergy
http://www.telelogic.com/products/synergy/index.cfm
9EPOCH T&C® (Telemetry and Command, Integral Sys-
tems http://www.integ.com/EPOCHT&C.HTM

